
Eric Roberts Handout #7
MLA 321 January 26, 2016

Stored-Program Machines

Stored Program Machines

Eric Roberts
MLA 321

January 26, 2016

The von Neumann Architecture
•� One of the foundational ideas of

modern computing—traditionally
attributed to John von Neumann
although others can make valid
claims to the idea—is that code is
stored in the same memory as
data. This concept is called the
stored programming model.

•� The next few slides introduce the
Manchester Baby, which was the
first stored-program computer. In
the rest of today’s class, I will
describe the operation of a slightly
more powerful machine that I’ve
nicknamed Toddler.

John von Neumann and J. Robert Oppenheimer�

The Manchester Baby Structure of the Toddler Machine

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x

0
1
2
3
4
5
6
7
8
9

0�0�0�+�
AC

0�0�
PC IR

0�0�0�+�

Console�

The Toddler Instruction Set

1xx LOAD xx Loads the value from address xx into AC�
2xx STORE xx Stores the value from AC into address xx
3xx ADD xx Adds the value at address xx to AC
4xx SUB xx Subtracts the value at address xx from AC

8xx INPUT xx Reads a value into address xx
9xx OUTPUT xx Prints the value in address xx

500 HALT Halts the machine
5xx JUMP xx Takes the next instruction from address xx
6xx JUMPZ xx Jumps to xx if AC is zero
7xx JUMPN xx Jumps to xx if AC is negative

The Add-Two-Numbers Program
+850� INPUT 50�(01)�
+851� INPUT 51�(02)�
+150� LOAD 50�(03)�
+351� ADD 51�(04)�
+252� STORE 52�(05)�
+952� OUTPUT 52�(06)�
+500� HALT�(07)�

– 2 –

The Instruction Cycle
1. Fetch the current instruction. In this phase, Toddler

finds the word from the memory address specified by the
PC and copies its value into the IR.

2. Increment the program counter. Once the current
instruction has been copied into the IR, Toddler adds one
to the PC so that it points to the next instruction.

3. Decode the instruction in the instruction register. The
value copied into the IR is a three-digit integer. To use it
as an instruction, Toddler must divide the instruction
word into its opcode and address components.

4. Execute the instruction. Once the operation code and
address field have been identified, the Toddler processor
must carry out the steps necessary to perform the
indicated action.

The Add-Two-Numbers Program

0�5�8�+�
1�5�8�+�
0�5�1�+�
1�5�3�+�
2�5�2�+�
2�5�9�+�
0�0�5�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�
0�0�0�+�

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x

0
1
2
3
4
5
6
7
8
9

0�0�0�+�
AC

0�0�
PC IR

0�0�0�+�

Console�
 ? 17
 ? 25
42

The Countdown Program

+111� start: LOAD ten (01)�
+212� STORE i (02)�
+709� loop: JUMPN done (03)�
+912� OUTPUT i (04)�
+112� LOAD i (05)�
+410� SUB one (06)�
+212� STORE i (07)�
+503� JUMP 03 (08)�
+500� done: HALT (09)�
+001� one: 1 (10)�
+010� ten: 10 (11)�
+000� i: 0 (12)�

assembly language

Representing Constants
•� Just as was true for the Analytical Engine, constants in the

Toddler machine need to be stored in one of the memory
addresses, as illustrated by the following lines from the
assembly language version of Countdown.td:

one: 1
ten: 10

•� The instruction LOAD ten then refers to a memory address that
contains the value 10.

LOAD #10

•� Toddler also allows you to write

which finds space for the constant 10 at the end of the
program and then fills in the LOAD instruction with the
address of that constant.

Exercise: Multiply Two Numbers
•� How would you write a Toddler program to multiply two

nonnegative numbers, even though the machine has no
multiply instruction?

Console�
 ?
 ?
42
 7
 6

The Concept of a Stack
•� A stack is a data structure in which the

elements are accessible only in a last-
in/first-out order. The operations on a
stack are push, which adds a value to
the top of the stack, and pop, which
removes and returns the top value.

•� One of the most common metaphors
for the stack concept is a spring-loaded
storage tray for dishes. Adding a new
dish to the stack pushes any previous
dishes downward. Taking the top dish
away allows the dishes to pop back up.

•� Stacks are important in von Neumann
machines because function calls obey a
last-in/first-out discipline.

– 3 –

The Toddler System Stack
•� Like all modern hardware, the Toddler machine implements a

stack in hardware to simplify dividing programs up into
independent functions.

•� The Toddler stack lives at the highest addresses in memory, so
the bottom of a stack is at address 99, and the stack grows
toward lower memory addresses.

•� The address of the element at the top of the stack is stored in
the register SP. If the SP is 00, that means the stack is empty.

•� Pushing a value on the stack corresponds to subtracting one
from the SP and then storing a value in the resulting address.

•� Popping the top value from the stack reverses the process by
taking the current contents of the word addressed by SP and
then adding one to SP.

Functions and Stacks
•� The CALL instruction pushes the current value of the PC

(which has already been incremented to refer to the next
instruction) on the stack. This value is called the return
address.

•� The RETURN instruction pops the top value on the stack into
the PC, which has the effect of returning to the point just after
the CALL instruction.

The Extended Instruction Set

-1xx LOADX xx Loads the value from address xx into XR�
-2xx STOREX xx Stores the value from XR into address xx
-3xx LOAD xx(XR) Loads AC with the contents of xx + XR
-4xx STORE xx(XR) Stores AC into address xx + XR

-8xx INCHAR xx Reads a character code into address xx
-9xx OUTCHAR xx Prints the character code in address xx

-500 RETURN Returns from a function
-5xx CALL xx Call the function at address xx
-6xx PUSH xx Push the contents of xx on the stack
-7xx POP xx Pops the top element on the stack into xx

Exercise: Multiply as a Function
•� Rewrite the Multiply.td program so that it defines a

function called mult that takes values in the variables n1 and
n2 and returns its answer in a variable called result.

Console�
 ?
720
 6

•� Use that function to write a program called Factorial.td
that computes the factorial of an integer. The largest factorial
that fits in three digits is 6!, so a sample run might look like
this:

Class Example: Hello, World
•� The INCHAR and OUTCHAR instructions are similar to INPUT

and OUTPUT except that they read and write the numeric
representation of a single character.

Console�
hello, world

•� In class, I’ll go over three different implementations of a
program that prints the string “hello, world” on the console.

Self-Modifying Code
•� One of the defining features of the von Neumann architecture

is that instructions and data are stored in the same memory.
That fact makes it possible for programs to modify their own
instructions by treating them just like any other numeric data.

•� The HelloWorld2.td program uses this technique to create
an instruction that prints a character from the address that is
the start of the string "hello, world" plus the value of the
index i. It then stores that instruction in the program and
executes it.

•� Programs that change their own instructions are said to be
self-modifying. In early machines, this strategy was often the
only way to accomplish certain operations. Today, it is
generally seen as a dangerous programming practice.

– 4 –

The Internet Worm Robert Morris Jr.

stack

Storage for local variables in Unix
is provided by a stack, which grows
toward low memory addresses as
functions are called.

How the Morris Worm Worked

return address

The fingerd code allocates a stack
buffer to hold the user name, which
might be declared like this:
 char buffer[20];

stack frames
from earlier calls

e r o b

e r t s

\0

If the string supplied is too long, it
will overwrite the contents of the
stack and allow the worm to execute
the inserted code.

t h i s

- i s -

- a - -

l o n g

n a m e

new return address

new code

Index Registers
•� The HelloWorld3.td program avoids the self-modifying

strategy by using the Toddler machine’s index register (XR),
which automatically adds the contents of the index register to
the address given in a LOAD or STORE instruction.

•� The LOADX and STOREX instructions load and store the
contents of the XR itself. Adding the suffix (XR) to a LOAD or
STORE instruction changes what memory address is used.

